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Abstract—Construction and classification of bent functions is 
an open problem. There is a lack of recursive method to 
construct bent functions. For  the first time Dobbertin and 
Leander have embedded the problem of construction of bent 
functions into a recursive framework by introducing the idea 
of a more general type of functions said to be Z-bent 
functions. The construction of Z-bent functions of special class 
is an important problem. In this paper we construct some 
special class of Z-bent functions. 
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I. INTRODUCTION 

Boolean functions play an important role in cryptography 
and error correcting coding activities. Shannon  [12] 
introduces the concept of confusion and diffusion as a 
fundamental technique to achieve security in cryptographic 
system.  Confusion is reflected in nonlinearity of certain 
cryptographic primitives; most linear systems are easily 
breakable. So, it is important  to have criteria which reflect 
nonlinearity. The best known criterion is the so-called 
perfect nonlinearity introduced by Meier and Staffelbach in 
[3]. This concept is equivalent to the bent property 
discovered by Rothaus in [9]. Bent functions have practical 
applications in cryptography, coding theory and  spread 
spectrum communication. Classification and construction 
of bent functions is a very important open problem [8, 9]. 
Although substantial effort has been given on the study of 
bent functions in the last three decades even the set of all 8- 
variables bent functions could not be completely classified. 
There is only few known method to construct bent 
functions.  Dobbertin and Leander [1] have embedded for 
the first time the problem of construction of bent functions 
into a recursive framework by introducing the idea of more 
general type of functions said to be Z-bent functions. By 
using this technique they enumerated all the bent functions 
on 8-variables. In this recursive method  Z-bent functions 
are partitioned into Z-bent functions of  different levels. 
The Z-bent functions of level r on n-variables can be 
Used to construct Z-bent functions of  level r-1 on n+2 
variables  by a ‘gluing’ technique introduced by Dobbertin 
and Leander  [1]. Continuing in this way eventually Z-bent 
functions of level 0 on n+2r  variables are obtained which 
are same as bent Boolean functions on n+2r variables. In 
the same paper they mentioned the need of finding out 
constructions of particular classes of  Z-bent functions of 
arbitrary levels. In paper [2] we have given the construction 
of PS-type Z-bent functions of  arbitrary level r for any r ≥1 
and constructed all bent functions up to affine equivalence 
on 6-variables by using PS-type  Z-bent functions of  level 
1 on 4-variables. In the same paper [2] we have given a 
new primary construction of bent functions using Z-bent 
functions. So the study of  Z-bent functions of different 

level is an interesting  problem. In this paper we are giving 
some class of  Z-bent functions which are analogous to 
Maiorana-McFarland functions, Gold like functions and 
Rotational symmetric functions. We have constructed all 
rotational symmetric Z-bent functions of  level 1on 4-
variables and constructed bent functions of  level zero i.e. 
binary bent functions on 6-variables using these Z-bent 
functions on level 1 on 4-variables. 
 

II. PRELIMINARIES 

Any function from 
2nF to 2F  is called a Boolean function 

on n-variables, where 2F ={0,1}  is the prime field of 

characteristic 2 and 
2nF  is an extension field of degree n 

over 2F  . The set of all n-variables Boolean functions is 

denoted by Bn. The Algebraic Normal Form (ANF) of a 
Boolean function is given as 

                    
2

( ) n

a
aa F

f x x


   

Where 
1

i

n
aa

i
i

x x


  is  a monomial and 2a F  .  

The degree of a Boolean function is the degree of its  
Algebraic Normal Form. The affine functions are the 
Boolean functions having degree at most one. The set of all 
affine functions on n-variables are denoted by An. The 
Hamming distance between two Boolean functions f, g א 
Bn is denoted by d(f,g) is the size of the set 

2
{ : 0}nx F f g   .  If  there are two functions f, gא 

Bn such that there exist b, λ א F2
n  and ε א F2 

 1( ) ( ) ( )nf x g Ax b Tr x      

Where Aא GL(n, F2) is n×n non-singular matrix.  
Nonlinearity of fא Bn is defined as 

( ) min { ( , )}
nl Anl f d f l . The Walsh transform of f א 

Bn at any point א ߣ F2n  is defined as  

 1

2

( ) ( )( ) ( 1)
n

n

f x Tr x
f x FW  

   

The set 
2

{ ( ) : }nfW F    is set to be the Walsh 

spectrum of f. The Fourier transform of f א Bn is defined as 

 
2

1ˆ ( ) ( )( 1)
2 n

x
x Fk

f f x    �  

Where λ·x is the inner product on 
2nF when consider as 

vector space over 2F . There is a vector space isomprphism 

between 2
nF  and 

2nF , where 2
nF is the set of all n-

tuples over 2F . 
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 Definition  1: A Boolean function on n variables, where n 
is even is said to bent if it at the maximum distance to the 
set of affine functions. Bent functions are the maximally 
nonlinear in the sense that their Walsh transform attain 

precisely the value   22
n

 .    Alternatively  bent  functions 
are the  1  valued functions with േ1 Fourier transform. 
The notion of bent functions was defined by Rothaus ሾ9ሿ 
in 1976. 
 
Definition 2: The Maiorana McFarland class M is the set 

of  all  function  on  2
2 2{( , ) : , }

n
nF x y x y F   of  the 

form  
 ( , ) ( ) ( )f x y x y g y �  

Where   is a permutation on 2
2

n

F  and g is a Boolean 

function on 2
2

n

F . Any such function is bent function. 

 
Definition 3: A Boolean function is said to be Rotational 
symmetric if for each input 

1 1 1( ,..., ) {0,1} , ( ( ,..., )) ( ,..., )n k
n n n nx x f x x f x x   

for 1൑ k ൑ n. 

Where  ( ) { i k

i k n

x ifi k nk
n i x ifi k nx 

 

 
   and 

1 1( ,..., ) ( ( ),..., ( ))k k k
n n n n nx x x x    

Let 

1 1 1( ,..., ) { ( ,..., ) ( ( ),..., ( ))}k k k
n n n n n n nG x x x x x x   

then  1( ,..., )n nG x x  generate  a  partition  on  the  set nV . 

Let  ng  be  the number  of  such partition,  then  the  total 

number of rotational symmetric function on n‐variables 

are2 ng .  The  space  of    rotational  symmetric  Boolean 
functions  is much  smaller  than  the    Boolean  functions 
on  n‐variables.  The  space  of  rotational  symmetric 

Boolean functions is approximately 
2

22
n

 for n‐variables. 
So, any kind of search become comparatively easier.  
In the next section we are defining rotational symmetric 
Z‐bent functions and giving some computational results 
using ‘C’ programming. 
 
Definition 4: The trace function on 

2nF  is defined as 

 2 1
1 2

( ) ... 2 n

n nTr x x x x F       

The trace function satisfies the following properties [7] 

1. 1 1 1 2
( ) ( ) ( ) , n

n n nTr x y Tr x Tr y x y F      

2. 1 1 2( ) ( )n n nTr cx cTr x x F    and 2c F  

3. 1
nTr  is a linear function from 

2nF  to 2F  where both 

are viewed as vector space on 2F  

4. 2
1 1 2

(2 ) ( )
r

n

n nTr Tr x x F    and for any positive 

integer r. 
 

Definition 5: A polynomial of the form  

 
0

( )
i

n
q

i
i

L x x


  

With the coefficient in the extended field mq
F  of qF is 

said to be linearized polynomial over mq
F . 

 
Let us denote the set of integers by Z. A Boolean 

function can be viewed as integer valued function by 

considering ( )( ) ( 1) { 1,1}F xf x Z     . Dobbertin 

and Leander generalized the notion of bent functions to Z-
bent functions [1]. Consider a sequence of subset of Z as 
  

 
0

1 1

{ 1,1}

{ : 2 2 }, 1r r
r

W

W w Z w r 

 

     
 

 
 

Definition 6: A function from 2
n

rF W  is said to Z-bent 

function of size k (here n=2k) and level r if and only if f̂  

is also a function into rW . Let the set of all Z-bent 

functions of size k and level r is denoted by k
rBF . Any 

function belonging to 0
k

r rBF  is said to be Z-bent 

function. 
 

Definition 7: An integer- valued function h on 2
mF , m 

odd is called an odd Z-bent function if the Fourier spectrum 

of h  lies in 2Z . 

Suppose k
rf BF , 

1 2

2
1 2 2 1 2 2{( , , ) : }, ,nU y y F F         

 and 
1 2

2
1 2 2( ) ( , , ), nh y f y y F       

Construct functions 
1 2

f   as follows: 

Case 1: For r൒1 

00 10 00 10

10 11 01 11

1 1

1 1

f f h h

f f h h

    
        

                 (1) 

  
Case 2: For r൒0 

00 10 00 10

01 11 01 11

1 11

1 12

f f h h

f f h h

    
        

           (2) 

It is proved in ([1], Proposition 2) that the functions 

1

1
2 1

k
rf BF 


  for all 1 2 2, F   . The functions 

1

1
2 1

k
rf BF 


  form the canonical decomposition of 
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k
rf BF  and f can be recovered from 00 10 01 11, , ,f f f f  

by 

00 10 00 10

01 11 01 11

1 11

1 12

h h f f

h h f f

    
        

         (3) 

In the case 0r   f can be recovered from 

00 10 01 11, , ,f f f f  by 

00 10 00 10

01 11 01 11

1 1

1 1

h h f f

h h f f

    
        

               (4) 

Reversing the decomposition is called gluing but gluing is 
possible under certain condition. Using this gluing 
technique it is possible to construct Z-bent functions of 
large size and lower level from Z-bent functions of  smaller 
size and higher level. So, proceeding in this way after a 
finite number of steps it is possible to obtain Z-bent 
functions of level 0, which are same as bent functions. Due 
to the success of this recursive framework generating and 
characterizing subclasses of Z-bent functions is an 
important problem. 
 
     III .  SOME SPECIAL TYPE OF Z-BENT FUNCTIONS 
Here in this section we are defining some special class of 
Z-bent functions. We call them Maiorana-McFrland type Z-
bent functions, Gold like Z-bent functions and Rotational 
symmetric Z-bent functions. 
 
A. Maiorana-McFarland type Z-bent functions 
 
Theorem 1: Let f  be an n(=2k)-variables function which is 

constructed in such a way that ( )( , ) ( 1)x y
yf x y c   �

where 2, ,k
y rx y F c W   and π be a permutation on 

2
kF , then ( , )f x y  is a Z-bent function of level r. 

Proof: The Fourier transform of f at any point 

2( , ) na b F  where 2
2,

n

a b F  is  

2
2

2
,

1ˆ ( , ) ( , )( 1)

2
n

a x b y
n

x y F

f a b f x y 



  � �  

             

2
2

( )

2
,

1
( 1) ( 1)

2
n

x y a x b y
yn

x y F

c  



   � � �  

             

2 2
2 2

( )

2

1
( 1) ( 1)

2
n n

x y a xb y
yn

y F x F

c
 

 

    � ��  

        

             

2 2
2 2

( ( ) )

2

1
( 1) ( 1)

2
n n

x y ab y
yn

y F x F

c
 

 

    ��    

            
1

1

( )2
( )

2

1
2 ( 1)

2

n
b a

n a
c 




   �  

            
1

1

( )

( )
( 1)b a

a
c 




  �  

Since as by construction rf W  and by proof ˆ
rf W . 

Hence f  is a Z-bent function of  level r.  

 
Corollary 1: If f  is a Maiorana-McFarland type Z-bent 

function of  level r then its dual f̂  is also a Z-bent function 

of level r. 
Proof: By the above theorem the dual of  

( )( , ) ( 1)x y
yf x y c   �  is 

1

1

( )

( )
ˆ ( , ) ( 1)b a

a
f a b c 





  � . 

This show that dual of Maiorana-McFarland type Z-bent 
function is again Maiorana-McFarland type Z-bent function. 
 
 
B.  Gold like Z-bent function  
 
Here we define Gold like Z-bent function on odd 
dimension and this type of function are called odd Z-bent 
functions [1]. 
 

Theorem 2: Let ( )( ) ( 1)g xf x    where 
1

2
2 1

1
1

( ) ( ), {0,1}
i

n

n
i i

i

g x c Tr x c








  and n is odd then 

( )f x  is odd Z-bent function of level 1 if and only if  the 

dimension of the kernel of the cyclic matrix  

                         

0 1

1 0

nc c

L

c c

 
   
 
 



  



 

over 2F  is 1, where we define 0 0c   and n i ic c   for 

1
0,...,

2

n
i


 . 

Proof: Since ( )( ) ( 1)g xf x    , therefore 1( )f x W . 

The Fourier transform of f  at any point  is given as 

1

2

( )

2

1ˆ ( ) ( )( 1)

2

n

n

Tr x
n

x F

f f x 


  .  

1 1

2

( ) ( ) ( ) ( )2 2

,

1ˆ ( ) ( 1) ( 1)
2

n n

n

g x Tr x g y Tr y
n

x y F

f     



    

           1 1

2

( ) ( ) ( ) ( )2

,

1
( 1)

2

n n

n

g x Tr x g y Tr y
n

x y F

    



   

         1

2

( ) ( )2 ( )

,

1
( 1)

2

n

n

g x Tr g x
n

x y F

    



    

                  taking       y x    

    

1

2 2

( ) ( ) ( )( ) ( )21
( 1) ( 1)

2

n

n n

g x g g xg Tr
n

F x F

  



   

 

     
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 1

2 2

( , )( ) ( )21
( 1) ( 1)

2

n

n n

xg Tr
n

F x F

  



 

 

     

 
Where ( , ) ( ) ( ) ( )x g g x g x        

1

2
2 1 2 1 2 1

1 1 1
1

( , ) [ ( ) ( ) (( ) )]
i i i

n

n n n
i

i

x c Tr x Tr Tr x   



  



   
         

1

2
2 1 2 1 2 2

1 1 1
1

( , ) [ ( ) ( ) (( )( ))]
i i i i

n

n n n
i

i

x c Tr x Tr Tr x x    



 



    

            

1

2
2 2

1
1

[ ( )]
i n i

n

n
i

i

c Tr x x 






   

     Since 2 2 2 2
1 1 1( ) ( ) ( )

i i n i n in n nTr x Tr x Tr x  
 

   

            

1

2
2 2

1
1

[ ( ( ))]
n i i

n

n
i

i

c Tr x  






   

          1 ( ( ( )))nTr x L   

 Where 

1

2
2 2

1

( ) ( )
n i i

n

i
i

L c  






  . Since L is a linear 

function under the normal basis
2 12 2 2{ , , ,..., }

n

   


 

of 
2nF , the matrix representation of L is given as 

                    

0 1

1 0

nc c

L

c c

 
   
 
 



  



 

Since 

2 2

( , ) ( ( ))( 1) ( 1) 2
n n

x Tr xL n

x F x F

  

 

      if and 

only if ( ) 0L   , otherwise the sum is zero. Therefore 

1( ) ( )2 2

( )

ˆ ( ) ( 1)
ng Tr

Ker L

f  



  



   

Since 1 { 1,0,1}W     therefore  

1( ) ( )2

( )

ˆ ( ) ( 1)
ng Tr

Ker L

f  



 



   or  0. By definition of  

 ,  1 ( ) ( )nTr g   is a linear function on Ker(L) and 

assuming dim(Ker(L))= . Therefore  

             1( ) ( )

( )

( 1) {2 ,0}
ng Tr

Ker L

  







   

This imply that 2ˆ ( ) {0, 2 }f


   . If dim(Ker(L))=1 then  

ˆ ( ) {0, 2}f    12W . This imply that ( )f x  is an 

odd Z-bent function of level 1. 
 
 

  A way to get Z-bent function of higher level on n-

variables is the extension of  suitable mapping f  on 1
2

nF   

by doubling, i.e, setting [ | ]h f f . Now we have 

ˆ ˆ2 | 0h f     because we know that if we set 

 0 1|h f f  and  0 1
ˆ |h H H  then  

 

             
0 0

1 1

ˆ

ˆ

H f
M

H f

  
        

 

 

Where 
1 11

1 12
M

 
   

 is the self inverse unitery 

matrix.   
 
Thus the function [ | ]h f f  is of  level 2 with Fourier 

spectrum 2{ 2,0} { 2,0}   .Thus we can construct 

the Z-bent functions of  level 2 using the odd Z-bent 
functions of  level 1. 
 
C. Rotation Symmetric Z-bent functions 
 
  Now in this subsection we are defining the rotational 

symmetric structure on a function f  into 1W , where 

1 { 1,0,1}W    for n= 4. Then we get all rotational 

symmetric Z-bent function of  level 1 on 4-variables and 
then we use the technique of gluing describe in [1] to get 
the bent functions of 6-variables. The total number of such 

functions on n-variables are 23
n

 and the total number of 

rotational symmetric functions are 3 ng . For n=4 we get the 
following partition 
 

4

4

4

4

4

(0,0,0,0) (0,0,0,0);

(0,0,0,1) {(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)};

(0,0,1,1) {(0,0,1,1),(0,1,1,0),(1,0,0,1),(1,1,0,0)};

(0,1,0,1) {(0,1,0,1),(1,0,1,0)};

(0,1,1,1) {(0,1,1,1),(1,0,1,1),(1,

G

G

G

G

G







4

1,0,1),(1,1,1,0)};

(1,1,1,1) {(1,1,1,1)}G 
 

Therefore the total number of such function on 4-variables 

are 
423  i.e., 163  and the total number of rotational 

symmetric functions are 3 ng  i.e, 63  since 6ng   in this 

case. Out of these  63  rotational symmetric functions only 
41 functions are Z-bent functions of level 1. Below is the 
list of  41 rotational symmetric Z-bent functions on 4-
variables.  
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0-1-10-1001-10010110 111-11-1-1-11-1-1-1-1-1-11
0-1-11-1011-11011110 111010001000000-1
0-1-1-1-10-11-1-101-1110 1-1-10-1000-1000000-1
0110100-1100-10-1-10 -100001000010000-1
0111101-1110-11-1-10 -100101100110100-1
011-110-1-11-10-1-1-1-10 -100-101-100-110-100-1
-1110100010000001 -10000-10000-10000-1
-1-110-1000-10000001 100000010001011-1
1000010000100001 -1-1-10-1101-1011011-1
10000-10000-100001 -1-1-11-1111-1111111-1
10010-11001-101001 -1-1-1-1-11-11-1-111-111-1
100-10-1-100-1-10-1001 -1-1-10-1-101-10-11011-1
-1000000100010111 1000000-1000-10-1-1-1
1-1-10-1101-10110111 -1110110-1101-10-1-1-1
1-1-10-1-101-10-110111 -1111111-1111-11-1-1-1
1-1-11-1-111-11-111111 -111-111-1-11-11-1-1-1-1-1
1-1-1-1-1-1-11-1-1-11-1111 -11101-10-110-1-10-1-1-1
-1000000-1000-10-1-11  
 Table : Rotational symmetric Z-bent functions of level 1 on 

4-variables 
 
After gluing these rotational symmetric Z-bent functions 

on 4-variables we get 512 Z-bent functions  of  level 0 on 
6-variables i.e., 512 bent functions on 6-variables. These 
functions are affine equivalent to only two bent functions. 
It is proved by Rothaus in [9] that there are only 4 functions 
up to affine equivalent on 6-variables. These four functions 
are given in the following table. 
 
Sr. No.         functions 
1 
2 
 
3 
 
 
4 

1 2 3 4 5 6x x x x x x   

1 2 3 1 4 2 5 3 6x x x x x x x x x    

1 2 3 2 4 5 1 2 1 4 2 6

3 5 4 5

x x x x x x x x x x x x

x x x x

   
 

 

1 2 3 2 4 5 3 4 6 1 4 2 6

3 4 3 5 3 6 4 5 4 6

x x x x x x x x x x x x x

x x x x x x x x x x

   
   

 

 
We checked the affine equivalence of  those bent functions 
which we got after gluing the rotational symmetric Z-bent 
functions of level 1 by using the second derivative 
spectrum algorithm developed by S. Gangopadhyay in [6] 
and we found that these  
functions are affine equivalent to only two bent functions 

1 2 3 4 5 6x x x x x x   and 1 2 3 1 4 2 5 3 6x x x x x x x x x   . 

Out of these 512 bent functions 128 are affine equivalent to 

1 2 3 4 5 6x x x x x x   and 384 are affine equivalent to  

1 2 3 1 4 2 5 3 6x x x x x x x x x   . 

CONCLUSION 
In this paper we have defined Maiorana-McFarland type of  
Z-bent functions, Gold like Z-bent functions and Rotational 
symmetric Z-bent functions. We have constructed all 
rotational symmetric Z-bent functions of  level 1 on 4-
variables and constructed 6-variables bent functions from 
these Z-bent functions of level 1 using the recursive 
technique of paper [1]. 
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